We have estimated photometric redshifts (zphot) for more than 1.1 million galaxies of the public European Southern Observatory (ESO) Kilo-Degree Survey (KiDS) data release 2. KiDS is an optical wide-field imaging survey carried out with the Very Large Telescope (VLT) Survey Telescope (VST) and the OmegaCAM camera, which aims to tackle open questions in cosmology and galaxy evolution, such as the origin of dark energy and the channel of galaxy mass growth. We present a catalogue of photometric redshifts obtained using the Multi-Layer Perceptron with Quasi-Newton Algorithm (MLPQNA) model, provided within the framework of the DAta Mining and Exploration Web Application REsource (DAMEWARE). These photometric redshifts are based on a spectroscopic knowledge base that was obtained by merging spectroscopic data sets from the Galaxy and Mass Assembly (GAMA) data release 2 and the Sloan Digital Sky Survey III (SDSS-III) data release 9. The overall 1σ uncertainty on ∆z = (zspec- zphot)/(1 + zspec) is ̃0.03, with a very small average bias of ̃0.001, a normalized median absolute deviation of ̃0.02 and a fraction of catastrophic outliers (|∆z| >0.15) of ̃0.4 per cent.

Machine-learning-based photometric redshifts for galaxies of the ESO Kilo-Degree Survey data release 2 / Cavuoti, S.; Brescia, M.; Tortora, C.; Longo, G.; Napolitano, N. R.; Radovich, M.; La Barbera, F.; Capaccioli, M.; de Jong, J. T. A.; Getman, F.; Grado, A.; Paolillo, M.. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - 452:3(2015), pp. 3100-3105. [10.1093/mnras/stv1496]

Machine-learning-based photometric redshifts for galaxies of the ESO Kilo-Degree Survey data release 2

S. Cavuoti;M. Brescia;G. Longo;N. R. Napolitano;M. Paolillo
2015

Abstract

We have estimated photometric redshifts (zphot) for more than 1.1 million galaxies of the public European Southern Observatory (ESO) Kilo-Degree Survey (KiDS) data release 2. KiDS is an optical wide-field imaging survey carried out with the Very Large Telescope (VLT) Survey Telescope (VST) and the OmegaCAM camera, which aims to tackle open questions in cosmology and galaxy evolution, such as the origin of dark energy and the channel of galaxy mass growth. We present a catalogue of photometric redshifts obtained using the Multi-Layer Perceptron with Quasi-Newton Algorithm (MLPQNA) model, provided within the framework of the DAta Mining and Exploration Web Application REsource (DAMEWARE). These photometric redshifts are based on a spectroscopic knowledge base that was obtained by merging spectroscopic data sets from the Galaxy and Mass Assembly (GAMA) data release 2 and the Sloan Digital Sky Survey III (SDSS-III) data release 9. The overall 1σ uncertainty on ∆z = (zspec- zphot)/(1 + zspec) is ̃0.03, with a very small average bias of ̃0.001, a normalized median absolute deviation of ̃0.02 and a fraction of catastrophic outliers (|∆z| >0.15) of ̃0.4 per cent.
2015
Machine-learning-based photometric redshifts for galaxies of the ESO Kilo-Degree Survey data release 2 / Cavuoti, S.; Brescia, M.; Tortora, C.; Longo, G.; Napolitano, N. R.; Radovich, M.; La Barbera, F.; Capaccioli, M.; de Jong, J. T. A.; Getman, F.; Grado, A.; Paolillo, M.. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - 452:3(2015), pp. 3100-3105. [10.1093/mnras/stv1496]
File in questo prodotto:
File Dimensione Formato  
84-Cavuoti-stv1496.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 916.82 kB
Formato Adobe PDF
916.82 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/900714
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 38
social impact