The aim of this article is to prove the following theorem. Let G be any infinite simple locally finite group. Then, either G is isomorphic to PSL (2 , F) , where F is an infinite locally finite field, or G contains a subgroup which is the direct product of an infinite abelian subgroup of prime exponent p and a finite non-abelian p-subgroup.

On Centralizers of Locally Finite Simple Groups / Brescia, M.; Russo, A.. - In: MEDITERRANEAN JOURNAL OF MATHEMATICS. - ISSN 1660-5446. - 16:5(2019). [10.1007/s00009-019-1401-3]

On Centralizers of Locally Finite Simple Groups

Brescia M.;
2019

Abstract

The aim of this article is to prove the following theorem. Let G be any infinite simple locally finite group. Then, either G is isomorphic to PSL (2 , F) , where F is an infinite locally finite field, or G contains a subgroup which is the direct product of an infinite abelian subgroup of prime exponent p and a finite non-abelian p-subgroup.
2019
On Centralizers of Locally Finite Simple Groups / Brescia, M.; Russo, A.. - In: MEDITERRANEAN JOURNAL OF MATHEMATICS. - ISSN 1660-5446. - 16:5(2019). [10.1007/s00009-019-1401-3]
File in questo prodotto:
File Dimensione Formato  
brescia2019.pdf

solo utenti autorizzati

Licenza: Accesso privato/ristretto
Dimensione 305.89 kB
Formato Adobe PDF
305.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/902138
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact