The aim of this article is to prove the following theorem. Let G be any infinite simple locally finite group. Then, either G is isomorphic to PSL (2 , F) , where F is an infinite locally finite field, or G contains a subgroup which is the direct product of an infinite abelian subgroup of prime exponent p and a finite non-abelian p-subgroup.
On Centralizers of Locally Finite Simple Groups / Brescia, M.; Russo, A.. - In: MEDITERRANEAN JOURNAL OF MATHEMATICS. - ISSN 1660-5446. - 16:5(2019). [10.1007/s00009-019-1401-3]
On Centralizers of Locally Finite Simple Groups
Brescia M.;
2019
Abstract
The aim of this article is to prove the following theorem. Let G be any infinite simple locally finite group. Then, either G is isomorphic to PSL (2 , F) , where F is an infinite locally finite field, or G contains a subgroup which is the direct product of an infinite abelian subgroup of prime exponent p and a finite non-abelian p-subgroup.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
brescia2019.pdf
solo utenti autorizzati
Licenza:
Accesso privato/ristretto
Dimensione
305.89 kB
Formato
Adobe PDF
|
305.89 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.