In coastal cities, the effects of climate change will cause an increase in the intensity and frequency of extreme sea level (ESL). In this scenario, the application of the Coast-RiskBySea model is proposed to assess the economic impacts of ESL on the built environment in three Euro-Mediterranean coastal cities: Naples, Barcelona, and Marseille. The risk (land use-based) is assessed in the GIS environment as a function of the potential direct and tangible economic damages. The results highlight risk scenarios in all three cities with significant economic damages expected, requiring the implementation of climate mitigation and adaptation measures to reduce the current impacts and limit future ones. The simulations highlight the potential of both remote sensing data and GIS systems to carry out homogeneous environmental analyses over wide areas. The results that were obtained are compared with existing works to verify the reliability of the Coast-RiskBySea model.
The Future Impacts of ESL Events in Euro-Mediterranean Coastal Cities: The Coast-RiskBySea Model to Assess the Potential Economic Damages in Naples, Marseille and Barcelona / Clemente, M. F.. - In: SUSTAINABILITY. - ISSN 2071-1050. - 14:16(2022), p. 10096. [10.3390/su141610096]
The Future Impacts of ESL Events in Euro-Mediterranean Coastal Cities: The Coast-RiskBySea Model to Assess the Potential Economic Damages in Naples, Marseille and Barcelona
Clemente M. F.Primo
2022
Abstract
In coastal cities, the effects of climate change will cause an increase in the intensity and frequency of extreme sea level (ESL). In this scenario, the application of the Coast-RiskBySea model is proposed to assess the economic impacts of ESL on the built environment in three Euro-Mediterranean coastal cities: Naples, Barcelona, and Marseille. The risk (land use-based) is assessed in the GIS environment as a function of the potential direct and tangible economic damages. The results highlight risk scenarios in all three cities with significant economic damages expected, requiring the implementation of climate mitigation and adaptation measures to reduce the current impacts and limit future ones. The simulations highlight the potential of both remote sensing data and GIS systems to carry out homogeneous environmental analyses over wide areas. The results that were obtained are compared with existing works to verify the reliability of the Coast-RiskBySea model.| File | Dimensione | Formato | |
|---|---|---|---|
|
sustainability-14-10096.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
6.41 MB
Formato
Adobe PDF
|
6.41 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


