By applying Pitt’s inequality we prove a weighted L^p version of Gallagher’s inequality for trigonometric series. Furthermore, we consider a family of weights generated by a smoothing process, via convolution operation, whose first steps are the indicator function of a compact interval and the so-called Cesàro weight supported in the same interval. The eventual aim is the comparison of such weights in view of possible refinements of our inequality for p=2.

A weighted inequality for trigonometric series / Laporta, Maurizio; Coppola, Giovanni. - In: THE JOURNAL OF ANALYSIS. - ISSN 2367-2501. - 31:2(2023), pp. 1041-1056. [10.1007/s41478-022-00486-y]

A weighted inequality for trigonometric series

Maurizio Laporta
;
Giovanni Coppola
2023

Abstract

By applying Pitt’s inequality we prove a weighted L^p version of Gallagher’s inequality for trigonometric series. Furthermore, we consider a family of weights generated by a smoothing process, via convolution operation, whose first steps are the indicator function of a compact interval and the so-called Cesàro weight supported in the same interval. The eventual aim is the comparison of such weights in view of possible refinements of our inequality for p=2.
2023
A weighted inequality for trigonometric series / Laporta, Maurizio; Coppola, Giovanni. - In: THE JOURNAL OF ANALYSIS. - ISSN 2367-2501. - 31:2(2023), pp. 1041-1056. [10.1007/s41478-022-00486-y]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/905724
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact