We considerS 2-valued maps on a domain Ω C R N minimizing a perturbation of the Dirichlet energy with vertical penalization in Ω and horizontal penalization on Ω . We first show the global minimality of universal constant configurations in a specific range of the physical parameters using a Poincar\'e-type inequality. Then we prove that any energy minimizer takes its values into a fixed half-meridian of the sphere S 2 and deduce uniqueness of minimizers up to the action of the appropriate symmetry group. We also prove a comparison principle for minimizers with different penalizations. Finally, we apply these results to a problem on a ball and show radial symmetry and monotonicity of minimizers. In dimension N = 2 our results can be applied to the Oseen-Frank energy for nematic liquid crystals and the micromagnetic energy in a thin-film regime.

SYMMETRY PROPERTIES OF MINIMIZERS OF A PERTURBED DIRICHLET ENERGY WITH A BOUNDARY PENALIZATION / DI FRATTA, Giovanni; Monteil, A.; Slastikov, V.. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - 54:3(2022), pp. 3636-3653. [10.1137/21M143011X]

SYMMETRY PROPERTIES OF MINIMIZERS OF A PERTURBED DIRICHLET ENERGY WITH A BOUNDARY PENALIZATION

Di Fratta Giovanni;
2022

Abstract

We considerS 2-valued maps on a domain Ω C R N minimizing a perturbation of the Dirichlet energy with vertical penalization in Ω and horizontal penalization on Ω . We first show the global minimality of universal constant configurations in a specific range of the physical parameters using a Poincar\'e-type inequality. Then we prove that any energy minimizer takes its values into a fixed half-meridian of the sphere S 2 and deduce uniqueness of minimizers up to the action of the appropriate symmetry group. We also prove a comparison principle for minimizers with different penalizations. Finally, we apply these results to a problem on a ball and show radial symmetry and monotonicity of minimizers. In dimension N = 2 our results can be applied to the Oseen-Frank energy for nematic liquid crystals and the micromagnetic energy in a thin-film regime.
2022
SYMMETRY PROPERTIES OF MINIMIZERS OF A PERTURBED DIRICHLET ENERGY WITH A BOUNDARY PENALIZATION / DI FRATTA, Giovanni; Monteil, A.; Slastikov, V.. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - 54:3(2022), pp. 3636-3653. [10.1137/21M143011X]
File in questo prodotto:
File Dimensione Formato  
2106.15830.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 701.18 kB
Formato Adobe PDF
701.18 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/915159
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact