A smooth, projective surface S is said to be isogenous to a product if there exist two smooth curves C, F and a finite group G acting freely on C × F so that S = (C × F)/G. In this paper we classify all surfaces with pg = q = 1 which are isogenous to a product. © 2009 de Gruyter.

The classification of surfaces with pg = q = 1 isogenous to a product of curves / Carnovale, G.; Polizzi, F.. - In: ADVANCES IN GEOMETRY. - ISSN 1615-715X. - 9:2(2009), pp. 233-256. [10.1515/ADVGEOM.2009.015]

The classification of surfaces with pg = q = 1 isogenous to a product of curves

Polizzi F.
2009

Abstract

A smooth, projective surface S is said to be isogenous to a product if there exist two smooth curves C, F and a finite group G acting freely on C × F so that S = (C × F)/G. In this paper we classify all surfaces with pg = q = 1 which are isogenous to a product. © 2009 de Gruyter.
2009
The classification of surfaces with pg = q = 1 isogenous to a product of curves / Carnovale, G.; Polizzi, F.. - In: ADVANCES IN GEOMETRY. - ISSN 1615-715X. - 9:2(2009), pp. 233-256. [10.1515/ADVGEOM.2009.015]
File in questo prodotto:
File Dimensione Formato  
Isogenous 2 - Electronic version.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 265.42 kB
Formato Adobe PDF
265.42 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/918985
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 18
social impact