We construct two complex-conjugated rigid minimal surfaces with pg = q = 2 and K2 = 8 whose universal cover is not biholomorphic to the bidisk H × H. We show that these are the unique surfaces with these invariants and Albanese map of degree 2, apart from the family of product-quotient surfaces given in [33]. This completes the classification of surfaces with pg = q = 2, K2 = 8, and Albanese map of degree 2.
A Pair of Rigid Surfaces with pg= q = 2 and K2= 8 Whose Universal Cover is Not the Bidisk / Polizzi, F.; Rito, C.; Roulleau, X.. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - 2020:11(2020), pp. 3453-3493. [10.1093/IMRN/RNY107]
A Pair of Rigid Surfaces with pg= q = 2 and K2= 8 Whose Universal Cover is Not the Bidisk
Polizzi F.
;
2020
Abstract
We construct two complex-conjugated rigid minimal surfaces with pg = q = 2 and K2 = 8 whose universal cover is not biholomorphic to the bidisk H × H. We show that these are the unique surfaces with these invariants and Albanese map of degree 2, apart from the family of product-quotient surfaces given in [33]. This completes the classification of surfaces with pg = q = 2, K2 = 8, and Albanese map of degree 2.File | Dimensione | Formato | |
---|---|---|---|
Polizzi-Rito-Roulleau-2020-Electronic version.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
581.49 kB
Formato
Adobe PDF
|
581.49 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.