The main results in the paper are the weighted multipolar Hardy inequalities \begin{equation*} c\int_{\mathbb{R}^N}\sum_{i=1}^n\frac{\varphi^2}{|x-a_i|^2}\,\mu(x)dx \leq\int_{\mathbb{R}^N}|\nabla \varphi |^2\mu(x)dx+ K\int_{\mathbb{R}^N} \varphi^2\mu(x)dx, \end{equation*} in $\mathbb{R}^N$ for any $\varphi$ in a suitable weighted Sobolev space, with $0
Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials / Canale, Anna; Pappalardo, Francesco; Tarantino, Ciro. - In: COMMUNICATIONS ON PURE AND APPLIED ANALYSIS. - ISSN 1534-0392. - 20:1(2021), pp. 405-425. [10.3934/cpaa.2020274]
Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials
Francesco Pappalardo;Ciro Tarantino
2021
Abstract
The main results in the paper are the weighted multipolar Hardy inequalities \begin{equation*} c\int_{\mathbb{R}^N}\sum_{i=1}^n\frac{\varphi^2}{|x-a_i|^2}\,\mu(x)dx \leq\int_{\mathbb{R}^N}|\nabla \varphi |^2\mu(x)dx+ K\int_{\mathbb{R}^N} \varphi^2\mu(x)dx, \end{equation*} in $\mathbb{R}^N$ for any $\varphi$ in a suitable weighted Sobolev space, with $0I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.