In this paper, we prove a new gradient estimate for minimal graphs defined on domains of a complete manifold M with Ricci curvature bounded from below. This enables us to show that positive, entire minimal graphs on manifolds with non-negative Ricci curvature are constant and that complete, parabolic manifolds with Ricci curvature bounded from below have the half-space property. We avoid the need of sectional curvature bounds on M by exploiting a form of the Ahlfors–Khas’minskii duality in nonlinear potential theory.

Bernstein and half-space properties for minimal graphs under Ricci lower bounds / Colombo, G; Magliaro, M; Mari, L; Rigoli, M. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - 2022:23(2022), pp. 18256-18290. [10.1093/imrn/rnab342]

Bernstein and half-space properties for minimal graphs under Ricci lower bounds

COLOMBO G;
2022

Abstract

In this paper, we prove a new gradient estimate for minimal graphs defined on domains of a complete manifold M with Ricci curvature bounded from below. This enables us to show that positive, entire minimal graphs on manifolds with non-negative Ricci curvature are constant and that complete, parabolic manifolds with Ricci curvature bounded from below have the half-space property. We avoid the need of sectional curvature bounds on M by exploiting a form of the Ahlfors–Khas’minskii duality in nonlinear potential theory.
2022
Bernstein and half-space properties for minimal graphs under Ricci lower bounds / Colombo, G; Magliaro, M; Mari, L; Rigoli, M. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - 2022:23(2022), pp. 18256-18290. [10.1093/imrn/rnab342]
File in questo prodotto:
File Dimensione Formato  
colombo-magliaro-mari-rigoli-rnab342.pdf

non disponibili

Dimensione 357.41 kB
Formato Adobe PDF
357.41 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/938692
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact