A regularity result for free-discontinuity energies defined on the space SBVp() of special functions of bounded variation with variable exponent is proved, under the assumption of a log-Holder continuity for the variable exponent p(x). Our analysis expands on the regularity theory for minimizers of a class of free-discontinuity problems in the nonstandard growth case. This may be seen as a follow-up of the paper N. Fusco et al., J. Convex Anal. 8 (2001) 349-367, dealing with a constant exponent.
Regularity of minimizers for free-discontinuity problems with p(·)-growth / Leone, Chiara; Scilla, Giovanni; Solombrino, Francesco; Verde, Anna. - In: ESAIM. COCV. - ISSN 1292-8119. - 29:Art. no. 78(2023). [10.1051/cocv/2023062]
Regularity of minimizers for free-discontinuity problems with p(·)-growth
Leone, Chiara
;Scilla, Giovanni;Solombrino, Francesco;Verde, Anna
2023
Abstract
A regularity result for free-discontinuity energies defined on the space SBVp() of special functions of bounded variation with variable exponent is proved, under the assumption of a log-Holder continuity for the variable exponent p(x). Our analysis expands on the regularity theory for minimizers of a class of free-discontinuity problems in the nonstandard growth case. This may be seen as a follow-up of the paper N. Fusco et al., J. Convex Anal. 8 (2001) 349-367, dealing with a constant exponent.File | Dimensione | Formato | |
---|---|---|---|
cocv230053.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
668.63 kB
Formato
Adobe PDF
|
668.63 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.