Aim: To non-invasively predict Oncotype DX recurrence scores (ODXRS) in patients with ER+ HER2- invasive breast cancer (IBC) using dynamic contrast-enhanced (DCE) MRI-derived radiomics features extracted from primary tumor lesions and a ML algorithm. Materials and methods: Pre-operative DCE-MRI of patients with IBC, no history of neoadjuvant therapy prior to MRI, and for which the ODXRS was available, were retrospectively selected from a public dataset. ODXRS was obtained on histological tumor samples and considered as positive if greater than 16 and 26 in patients aged under and over 50 years, respectively. Tumor lesions were manually annotated by three independent operators on DCE-MRI images through 3D ROIs positioning. Radiomic features were therefore extracted and selected using multistep feature selection process. A logistic regression ML classifier was then employed for the prediction of ODXRS. Results: 248 patients were included, of which 87 with positive ODXRS. 166 (66%) patients were grouped in the training set, while 82 (33%) in the test set. A total of 1288 features was extracted. Of these, 1244 were excluded as 771, 82 and 391 were excluded as not stable (n = 771), not variant (n = 82), and highly intercorrelated (n = 391), respectively. After the use of recursive feature elimination with logistic regression estimator and polynomial transformation, 92 features were finally selected. In the training set, the logistic regression classifier obtained an overall mean accuracy of 60%. In the test set, the accuracy of the ML classifier was 63%, with a sensitivity of 80%, specificity of 43%, and AUC of 66%. Conclusions: Radiomics and ML applied to pre-operative DCE-MRI in patients with IBC showed promises for the non-invasive prediction of ODXRS, aiding in selecting patients who will benefit from NAC.

MRI Radiomics and Machine Learning for the Prediction of Oncotype Dx Recurrence Score in Invasive Breast Cancer / Romeo, Valeria; Cuocolo, Renato; Sanduzzi, Luca; Carpentiero, Vincenzo; Caruso, Martina; Lama, Beatrice; Garifalos, Dimitri; Stanzione, Arnaldo; Maurea, Simone; Brunetti, Arturo. - In: CANCERS. - ISSN 2072-6694. - 15:6(2023), p. 1840. [10.3390/cancers15061840]

MRI Radiomics and Machine Learning for the Prediction of Oncotype Dx Recurrence Score in Invasive Breast Cancer

Valeria Romeo
Co-primo
;
Renato Cuocolo
Co-primo
;
Luca Sanduzzi
;
Vincenzo Carpentiero;Martina Caruso;Beatrice Lama;Dimitri Garifalos;Arnaldo Stanzione;Simone Maurea;Arturo Brunetti
2023

Abstract

Aim: To non-invasively predict Oncotype DX recurrence scores (ODXRS) in patients with ER+ HER2- invasive breast cancer (IBC) using dynamic contrast-enhanced (DCE) MRI-derived radiomics features extracted from primary tumor lesions and a ML algorithm. Materials and methods: Pre-operative DCE-MRI of patients with IBC, no history of neoadjuvant therapy prior to MRI, and for which the ODXRS was available, were retrospectively selected from a public dataset. ODXRS was obtained on histological tumor samples and considered as positive if greater than 16 and 26 in patients aged under and over 50 years, respectively. Tumor lesions were manually annotated by three independent operators on DCE-MRI images through 3D ROIs positioning. Radiomic features were therefore extracted and selected using multistep feature selection process. A logistic regression ML classifier was then employed for the prediction of ODXRS. Results: 248 patients were included, of which 87 with positive ODXRS. 166 (66%) patients were grouped in the training set, while 82 (33%) in the test set. A total of 1288 features was extracted. Of these, 1244 were excluded as 771, 82 and 391 were excluded as not stable (n = 771), not variant (n = 82), and highly intercorrelated (n = 391), respectively. After the use of recursive feature elimination with logistic regression estimator and polynomial transformation, 92 features were finally selected. In the training set, the logistic regression classifier obtained an overall mean accuracy of 60%. In the test set, the accuracy of the ML classifier was 63%, with a sensitivity of 80%, specificity of 43%, and AUC of 66%. Conclusions: Radiomics and ML applied to pre-operative DCE-MRI in patients with IBC showed promises for the non-invasive prediction of ODXRS, aiding in selecting patients who will benefit from NAC.
2023
MRI Radiomics and Machine Learning for the Prediction of Oncotype Dx Recurrence Score in Invasive Breast Cancer / Romeo, Valeria; Cuocolo, Renato; Sanduzzi, Luca; Carpentiero, Vincenzo; Caruso, Martina; Lama, Beatrice; Garifalos, Dimitri; Stanzione, Arnaldo; Maurea, Simone; Brunetti, Arturo. - In: CANCERS. - ISSN 2072-6694. - 15:6(2023), p. 1840. [10.3390/cancers15061840]
File in questo prodotto:
File Dimensione Formato  
2023.Romeo&Cuocolo_cancers-15-01840 (1).pdf

accesso aperto

Licenza: Creative commons
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/956070
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact