We prove that a compact Riemannian manifold of dimension m ≥ 3 with harmonic curvature and ⌊(m-1)/2⌋-positive curvature operator has constant sectional curvature, extending the classical Tachibana theorem for manifolds with positive curvature operator. The condition of ⌊(m-1)/2⌋-positivity originates from recent work of Petersen and Wink, who proved a similar Tachibana-type theorem under the stronger condition that the manifold be Einstein. We show that the same rigidity property holds for complete manifolds assuming either parabolicity, an integral bound on the Weyl tensor or a stronger pointwise positive lower bound on the average of the first ⌊(m-1)/2⌋ eigenvalues of the curvature operator. For 3-manifolds, we show that positivity of the curvature operator can be relaxed to positivity of the Ricci tensor.

Tachibana-type theorems on complete manifolds / Colombo, Giulio; Mariani, Marco; Rigoli, Marco. - In: ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE. - ISSN 2036-2145. - 24:2(2024), pp. 1033-1083. [10.2422/2036-2145.202203_018]

Tachibana-type theorems on complete manifolds

Colombo, Giulio;
2024

Abstract

We prove that a compact Riemannian manifold of dimension m ≥ 3 with harmonic curvature and ⌊(m-1)/2⌋-positive curvature operator has constant sectional curvature, extending the classical Tachibana theorem for manifolds with positive curvature operator. The condition of ⌊(m-1)/2⌋-positivity originates from recent work of Petersen and Wink, who proved a similar Tachibana-type theorem under the stronger condition that the manifold be Einstein. We show that the same rigidity property holds for complete manifolds assuming either parabolicity, an integral bound on the Weyl tensor or a stronger pointwise positive lower bound on the average of the first ⌊(m-1)/2⌋ eigenvalues of the curvature operator. For 3-manifolds, we show that positivity of the curvature operator can be relaxed to positivity of the Ricci tensor.
2024
Tachibana-type theorems on complete manifolds / Colombo, Giulio; Mariani, Marco; Rigoli, Marco. - In: ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE. - ISSN 2036-2145. - 24:2(2024), pp. 1033-1083. [10.2422/2036-2145.202203_018]
File in questo prodotto:
File Dimensione Formato  
Tachibana_colombo_mariani_rigoli_19_oct_22.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 590.02 kB
Formato Adobe PDF
590.02 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/956758
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact