Cluster analysis, as a form of unsupervised learning, has been developed to group observations by leveraging application-specific similarity measures. This study investigates matrix factorization techniques, with a specific focus on analyzing lexical tables within the framework of term-document matrices. Symmetric Non- Negative Matrix Factorization (SNMF) takes center stage as an effective tool for clustering operations. The primary challenge addressed is the automated determination of the optimal number of clusters.

Determining the optimal number of clusters through Symmetric Non-Negative Matrix Factorization / Stavolo, Agostino; Grassia, MARIA GABRIELLA; Marino, Marina; Mazza, Rocco; Paesano, Simone; Sacco, Dario. - (2024). (Intervento presentato al convegno Statistics and Data Science 2024 Conference).

Determining the optimal number of clusters through Symmetric Non-Negative Matrix Factorization

Stavolo Agostino;Grassia Maria Gabriella;Marino Marina;Mazza Rocco;Paesano Simone;Sacco Dario
2024

Abstract

Cluster analysis, as a form of unsupervised learning, has been developed to group observations by leveraging application-specific similarity measures. This study investigates matrix factorization techniques, with a specific focus on analyzing lexical tables within the framework of term-document matrices. Symmetric Non- Negative Matrix Factorization (SNMF) takes center stage as an effective tool for clustering operations. The primary challenge addressed is the automated determination of the optimal number of clusters.
2024
978-88-5509-645-4
Determining the optimal number of clusters through Symmetric Non-Negative Matrix Factorization / Stavolo, Agostino; Grassia, MARIA GABRIELLA; Marino, Marina; Mazza, Rocco; Paesano, Simone; Sacco, Dario. - (2024). (Intervento presentato al convegno Statistics and Data Science 2024 Conference).
File in questo prodotto:
File Dimensione Formato  
SDS contributo 2.pdf

accesso aperto

Licenza: Creative commons
Dimensione 760.37 kB
Formato Adobe PDF
760.37 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/966077
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact