We study the local boundedness of minimizers of non uniformly elliptic integral functionals with a suitable anisotropic p,q- growth condition. More precisely, the growth condition of the integrand function f(x,∇u) from below involves different p>1 powers of the partial derivatives of u and some monomial weights |x| with α∈[0,1) that may degenerate to zero. Otherwise from above it is controlled by a q power of the modulus of the gradient of u with q≥maxp and an unbounded weight μ(x). The main tool in the proof is an anisotropic Sobolev inequality with respect to the weights |x|.

Local Boundedness for Minimizers of Anisotropic Functionals with Monomial Weights / Feo, Filomena; Passarelli di Napoli, Antonia; Posteraro, Maria Rosaria. - In: JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS. - ISSN 0022-3239. - 201:3(2024), pp. 1313-1332. [10.1007/s10957-024-02432-3]

Local Boundedness for Minimizers of Anisotropic Functionals with Monomial Weights

Feo, Filomena;Passarelli di Napoli, Antonia;Posteraro, Maria Rosaria
2024

Abstract

We study the local boundedness of minimizers of non uniformly elliptic integral functionals with a suitable anisotropic p,q- growth condition. More precisely, the growth condition of the integrand function f(x,∇u) from below involves different p>1 powers of the partial derivatives of u and some monomial weights |x| with α∈[0,1) that may degenerate to zero. Otherwise from above it is controlled by a q power of the modulus of the gradient of u with q≥maxp and an unbounded weight μ(x). The main tool in the proof is an anisotropic Sobolev inequality with respect to the weights |x|.
2024
Local Boundedness for Minimizers of Anisotropic Functionals with Monomial Weights / Feo, Filomena; Passarelli di Napoli, Antonia; Posteraro, Maria Rosaria. - In: JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS. - ISSN 0022-3239. - 201:3(2024), pp. 1313-1332. [10.1007/s10957-024-02432-3]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/971885
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact