We prove the existence of a normalized, stationary solution ψ with frequency ω > 0 of a nonlinear Dirac equation. The result covers the case in which the nonlinearity is of Soler type. We find the solution as a critical point of a suitable functional restricted to the unit sphere in L^2 , and ω turns out to be the corresponding Lagrange multiplier.
Normalized solutions for a nonlinear Dirac equation / Coti Zelati, Vittorio; Nolasco, Margherita. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 414:(2025), pp. 746-772.
Normalized solutions for a nonlinear Dirac equation
Coti Zelati, Vittorio
;Nolasco, Margherita
2025
Abstract
We prove the existence of a normalized, stationary solution ψ with frequency ω > 0 of a nonlinear Dirac equation. The result covers the case in which the nonlinearity is of Soler type. We find the solution as a critical point of a suitable functional restricted to the unit sphere in L^2 , and ω turns out to be the corresponding Lagrange multiplier.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0022039624006144-main.pdf
accesso aperto
Descrizione: full text
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
361.81 kB
Formato
Adobe PDF
|
361.81 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.