Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
A low-energy electronic recoil calibration of XENON1T, a dual-phase xenon time projection chamber, with an internal 37 Ar source was performed. This calibration source features a 35-day half-life and provides two mono-energetic lines at 2.82 keV and 0.27 keV. The photon yield and electron yield at 2.82 keV are measured to be (32.3±0.3) photons/keV and (40.6±0.5) electrons/keV, respectively, in agreement with other measurements and with NEST predictions. The electron yield at 0.27 keV is also measured and it is (68.0-3.7+6.3) electrons/keV. The 37 Ar calibration confirms that the detector is well-understood in the energy region close to the detection threshold, with the 2.82 keV line reconstructed at (2.83±0.02) keV, which further validates the model used to interpret the low-energy electronic recoil excess previously reported by XENON1T. The ability to efficiently remove argon with cryogenic distillation after the calibration proves that 37 Ar can be considered as a regular calibration source for multi-tonne xenon detectors.
Low-energy calibration of XENON1T with an internal $$^{{\textbf {37}}}$$Ar source / Aprile, E.; Abe, K.; Agostini, F.; Ahmed Maouloud, S.; Alfonsi, M.; Althueser, L.; Andrieu, B.; Angelino, E.; Angevaare, J. R.; Antochi, V. C.; Antón Martin, D.; Arneodo, F.; Baudis, L.; Baxter, A. L.; Bellagamba, L.; Biondi, R.; Bismark, A.; Brown, A.; Bruenner, S.; Bruno, G.; Budnik, R.; Bui, T. K.; Cai, C.; Capelli, C.; Cardoso, J. M. R.; Cichon, D.; Colijn, A. P.; Conrad, J.; Cuenca-García, J. J.; Cussonneau, J. P.; D'Andrea, V.; Decowski, M. P.; Di Gangi, P.; Di Pede, S.; Diglio, S.; Eitel, K.; Elykov, A.; Farrell, S.; Ferella, A. D.; Ferrari, C.; Fischer, H.; Fulgione, W.; Gaemers, P.; Gaior, R.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Glade-Beucke, R.; Grandi, L.; Grigat, J.; Guida, M.; Hammann, R.; Higuera, A.; Hils, C.; Hoetzsch, L.; Howlett, J.; Iacovacci, M.; Itow, Y.; Jakob, J.; Joerg, F.; Joy, A.; Kato, N.; Kara, M.; Kavrigin, P.; Kazama, S.; Kobayashi, M.; Koltman, G.; Kopec, A.; Kuger, F.; Landsman, H.; Lang, R. F.; Levinson, L.; Li, I.; Li, S.; Liang, S.; Lindemann, S.; Lindner, M.; Liu, K.; Loizeau, J.; Lombardi, F.; Long, J.; Lopes, J. A. M.; Ma, Y.; Macolino, C.; Mahlstedt, J.; Mancuso, A.; Manenti, L.; Marignetti, F.; Marrodán Undagoitia, T.; Martens, K.; Masbou, J.; Masson, D.; Masson, E.; Mastroianni, S.; Messina, M.; Miuchi, K.; Mizukoshi, K.; Molinario, A.; Moriyama, S.; Morå, K.; Mosbacher, Y.; Murra, M.; Müller, J.; Ni, K.; Oberlack, U.; Paetsch, B.; Palacio, J.; Peres, R.; Peters, C.; Pienaar, J.; Pierre, M.; Pizzella, V.; Plante, G.; Qi, J.; Qin, J.; Ramírez García, D.; Reichard, S.; Rocchetti, A.; Rupp, N.; Sanchez, L.; Sanchez-Lucas, P.; Santos, J. M. F. dos; Sarnoff, I.; Sartorelli, G.; Schreiner, J.; Schulte, D.; Schulte, P.; Schulze Eißing, H.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Semeria, F.; Shagin, P.; Shi, S.; Shockley, E.; Silva, M.; Simgen, H.; Takeda, A.; Tan, P. -L.; Terliuk, A.; Thers, D.; Toschi, F.; Trinchero, G.; Tunnell, C.; Tönnies, F.; Valerius, K.; Volta, G.; Weinheimer, C.; Weiss, M.; Wenz, D.; Wittweg, C.; Wolf, T.; Xu, D.; Xu, Z.; Yamashita, M.; Yang, L.; Ye, J.; Yuan, L.; Zavattini, G.; Zerbo, S.; Zhong, M.; Zhu, T.; Geppert, C.; Riemer, J.; Null, Null. - In: EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS. - ISSN 1434-6052. - 83:6(2023). [10.1140/epjc/s10052-023-11512-z]
Low-energy calibration of XENON1T with an internal $$^{{\textbf {37}}}$$Ar source
A low-energy electronic recoil calibration of XENON1T, a dual-phase xenon time projection chamber, with an internal 37 Ar source was performed. This calibration source features a 35-day half-life and provides two mono-energetic lines at 2.82 keV and 0.27 keV. The photon yield and electron yield at 2.82 keV are measured to be (32.3±0.3) photons/keV and (40.6±0.5) electrons/keV, respectively, in agreement with other measurements and with NEST predictions. The electron yield at 0.27 keV is also measured and it is (68.0-3.7+6.3) electrons/keV. The 37 Ar calibration confirms that the detector is well-understood in the energy region close to the detection threshold, with the 2.82 keV line reconstructed at (2.83±0.02) keV, which further validates the model used to interpret the low-energy electronic recoil excess previously reported by XENON1T. The ability to efficiently remove argon with cryogenic distillation after the calibration proves that 37 Ar can be considered as a regular calibration source for multi-tonne xenon detectors.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/986601
Citazioni
ND
4
3
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.