Patients affected by idiopathic pulmonary fibrosis (IPF) have a high mortality rate in the first 2–5 years from diagnosis. It is therefore necessary to identify a prognostic indicator that can guide the care process. The Gender-Age-Physiology (GAP) index and staging system is an easy-to-calculate prediction tool, widely validated, and largely used in clinical practice to estimate the risk of mortality of IPF patients at 1–3 years. In our study, we analyzed the GAP index through machine learning to assess any improvement in its predictive power in a large cohort of IPF patients treated either with pirfenidone or nintedanib. In addition, we evaluated this event through the integration of additional parameters. As previously reported by Y. Suzuki et al., our data show that inclusion of body mass index (BMI) is the best strategy to reinforce the GAP performance in IPF patients under treatment with currently available anti-fibrotic drugs.

Machine Learning and BMI Improve the Prognostic Value of GAP Index in Treated IPF Patients / Lacedonia, Donato; De Pace, Cosimo Carlo; Rea, Gaetano; Capitelli, Ludovica; Gallo, Crescenzio; Scioscia, Giulia; Tondo, Pasquale; Bocchino, Marialuisa. - In: BIOENGINEERING. - ISSN 2306-5354. - 10:2(2023). [10.3390/bioengineering10020251]

Machine Learning and BMI Improve the Prognostic Value of GAP Index in Treated IPF Patients

Bocchino, Marialuisa
Ultimo
2023

Abstract

Patients affected by idiopathic pulmonary fibrosis (IPF) have a high mortality rate in the first 2–5 years from diagnosis. It is therefore necessary to identify a prognostic indicator that can guide the care process. The Gender-Age-Physiology (GAP) index and staging system is an easy-to-calculate prediction tool, widely validated, and largely used in clinical practice to estimate the risk of mortality of IPF patients at 1–3 years. In our study, we analyzed the GAP index through machine learning to assess any improvement in its predictive power in a large cohort of IPF patients treated either with pirfenidone or nintedanib. In addition, we evaluated this event through the integration of additional parameters. As previously reported by Y. Suzuki et al., our data show that inclusion of body mass index (BMI) is the best strategy to reinforce the GAP performance in IPF patients under treatment with currently available anti-fibrotic drugs.
2023
Machine Learning and BMI Improve the Prognostic Value of GAP Index in Treated IPF Patients / Lacedonia, Donato; De Pace, Cosimo Carlo; Rea, Gaetano; Capitelli, Ludovica; Gallo, Crescenzio; Scioscia, Giulia; Tondo, Pasquale; Bocchino, Marialuisa. - In: BIOENGINEERING. - ISSN 2306-5354. - 10:2(2023). [10.3390/bioengineering10020251]
File in questo prodotto:
File Dimensione Formato  
Bioengineering 2023.pdf

accesso aperto

Licenza: Dominio pubblico
Dimensione 243.96 kB
Formato Adobe PDF
243.96 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/990721
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact