The Fuhrman nuclear grade is a recognized prognostic factor for patients with clear cell renal cell carcinoma (CCRCC) and its pre-treatment evaluation significantly affects decision-making in terms of management. In this study, we aimed to assess the feasibility of a combined approach of radiomics and machine learning based on MR images for a non-invasive prediction of Fuhrman grade, specifically differentiation of high- from low-grade tumor and grade assessment. Images acquired on a 3-Tesla scanner (T2-weighted and post-contrast) from 32 patients (20 with low-grade and 12 with high-grade tumor) were annotated to generate volumes of interest enclosing CCRCC lesions. After image resampling, normalization, and filtering, 2438 features were extracted. A two-step feature reduction process was used to between 1 and 7 features depending on the algorithm employed. A J48 decision tree alone and in combination with ensemble learning methods were used. In the differentiation between high- and low-grade tumors, all the ensemble methods achieved an accuracy greater than 90%. On the other end, the best results in terms of accuracy (84.4%) in the assessment of tumor grade were achieved by the random forest. These evidences support the hypothesis that a combined radiomic and machine learning approach based on MR images could represent a feasible tool for the prediction of Fuhrman grade in patients affected by CCRCC.

MRI Radiomics for the Prediction of Fuhrman Grade in Clear Cell Renal Cell Carcinoma: a Machine Learning Exploratory Study / Stanzione, Arnaldo; Ricciardi, Carlo; Cuocolo, Renato; Romeo, Valeria; Petrone, Jessica; Sarnataro, Michela; Mainenti, Pier Paolo; Improta, Giovanni; De Rosa, Filippo; Insabato, Luigi; Brunetti, Arturo; Maurea, Simone. - In: JOURNAL OF DIGITAL IMAGING. - ISSN 0897-1889. - (2020). [10.1007/s10278-020-00336-y]

MRI Radiomics for the Prediction of Fuhrman Grade in Clear Cell Renal Cell Carcinoma: a Machine Learning Exploratory Study

Stanzione, Arnaldo;Ricciardi, Carlo;Cuocolo, Renato
;
Romeo, Valeria;Petrone, Jessica;Sarnataro, Michela;Mainenti, Pier Paolo;Improta, Giovanni;De Rosa, Filippo;Insabato, Luigi;Brunetti, Arturo;Maurea, Simone
2020

Abstract

The Fuhrman nuclear grade is a recognized prognostic factor for patients with clear cell renal cell carcinoma (CCRCC) and its pre-treatment evaluation significantly affects decision-making in terms of management. In this study, we aimed to assess the feasibility of a combined approach of radiomics and machine learning based on MR images for a non-invasive prediction of Fuhrman grade, specifically differentiation of high- from low-grade tumor and grade assessment. Images acquired on a 3-Tesla scanner (T2-weighted and post-contrast) from 32 patients (20 with low-grade and 12 with high-grade tumor) were annotated to generate volumes of interest enclosing CCRCC lesions. After image resampling, normalization, and filtering, 2438 features were extracted. A two-step feature reduction process was used to between 1 and 7 features depending on the algorithm employed. A J48 decision tree alone and in combination with ensemble learning methods were used. In the differentiation between high- and low-grade tumors, all the ensemble methods achieved an accuracy greater than 90%. On the other end, the best results in terms of accuracy (84.4%) in the assessment of tumor grade were achieved by the random forest. These evidences support the hypothesis that a combined radiomic and machine learning approach based on MR images could represent a feasible tool for the prediction of Fuhrman grade in patients affected by CCRCC.
2020
MRI Radiomics for the Prediction of Fuhrman Grade in Clear Cell Renal Cell Carcinoma: a Machine Learning Exploratory Study / Stanzione, Arnaldo; Ricciardi, Carlo; Cuocolo, Renato; Romeo, Valeria; Petrone, Jessica; Sarnataro, Michela; Mainenti, Pier Paolo; Improta, Giovanni; De Rosa, Filippo; Insabato, Luigi; Brunetti, Arturo; Maurea, Simone. - In: JOURNAL OF DIGITAL IMAGING. - ISSN 0897-1889. - (2020). [10.1007/s10278-020-00336-y]
File in questo prodotto:
File Dimensione Formato  
MRI Radiomics for the Prediction of Fuhrman Grade in Clear Cell Renal Cell Carcinoma a Machine Learning Exploratory Study.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Accesso privato/ristretto
Dimensione 3.53 MB
Formato Adobe PDF
3.53 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/804719
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 36
social impact