Probiotic and synbiotic yogurt preparations were manufactured at the semi-industrial pilot scale with Lactobacillus acidophilus and Bifidobacteria strains without inulin or fortified with 1 and 3% (w/w) inulin. The pathway of casein breakdown was determined in probiotic, synbiotic, conventional yogurt, and nonstarted milk base using HPLC–ESI-MS/MS-based peptidomics and phosphopeptidomics; in the latter case, casein phosphorylated peptides (CPPs) were previously enriched by hydroxyapatite chromatography. Compared with traditional yogurt, casein proteolysis increased in probiotic and even more in synbiotic yogurt with 1% inulin. Fortification with 3% inulin greatly modified the proteolytic pattern, indicating a characteristic contribution of probiotics to proteolysis. The enhanced proteolysis in synbiotic yogurt exposed the neo-formed peptides to progressively increase enzymatic or chemical modifications, such as dephosphorylation of CPPs, methionine oxidation, and formation of N-terminal pyroglutamic acids. These modifications might constitute molecular signature descriptors of metabolic processes mediated by complex bacterial communities, with technological, nutritional, and sensorial significance.
Proteolysis and Process-Induced Modifications in Synbiotic Yogurt Investigated by Peptidomics and Phosphopeptidomics / Pinto, Gabriella; Picariello, Gianluca; Addeo, Francesco; Chianese, Lina; Scaloni, Andrea; Simonetta Caira, And. - In: JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY. - ISSN 1520-5118. - (2020). [10.1021/acs.jafc.0c02603]
Proteolysis and Process-Induced Modifications in Synbiotic Yogurt Investigated by Peptidomics and Phosphopeptidomics
Gabriella Pinto;Gianluca Picariello;Francesco Addeo;Lina Chianese;
2020
Abstract
Probiotic and synbiotic yogurt preparations were manufactured at the semi-industrial pilot scale with Lactobacillus acidophilus and Bifidobacteria strains without inulin or fortified with 1 and 3% (w/w) inulin. The pathway of casein breakdown was determined in probiotic, synbiotic, conventional yogurt, and nonstarted milk base using HPLC–ESI-MS/MS-based peptidomics and phosphopeptidomics; in the latter case, casein phosphorylated peptides (CPPs) were previously enriched by hydroxyapatite chromatography. Compared with traditional yogurt, casein proteolysis increased in probiotic and even more in synbiotic yogurt with 1% inulin. Fortification with 3% inulin greatly modified the proteolytic pattern, indicating a characteristic contribution of probiotics to proteolysis. The enhanced proteolysis in synbiotic yogurt exposed the neo-formed peptides to progressively increase enzymatic or chemical modifications, such as dephosphorylation of CPPs, methionine oxidation, and formation of N-terminal pyroglutamic acids. These modifications might constitute molecular signature descriptors of metabolic processes mediated by complex bacterial communities, with technological, nutritional, and sensorial significance.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.