Aim: Small fibre neuropathy (SFN) diagnosis represents a challenge for neurologists. The diagnostic gold standard is intraepidermal nerve fibre (IENF) density, but in about 10–20% of patients with symptoms/signs and abnormalities on functional tests, it remains within normal range. We propose an adjunctive parameter to improve the efficiency of skin biopsy diagnosis. Methods: We recruited 31 patients with SFN symptoms/signs, normal nerve conduction study, abnormal quantitative sensory testing and normal IENF density. We also included 31 healthy controls and 31 SFN patients with reduced IENF density as control groups. Results: We measured the distance between consecutive IENFs in the three groups. Mean inter-fibre distances did not differ between patients with normal counts and healthy controls (66.7 ± 14.5 μm vs. 76.7 ± 13.4 μm; P = 0.052), while the relative standard deviation was significantly (P < 0.001) higher in patients (79.3 ± 29.9) compared to controls (51.6 ± 12.2). Using ROC analysis, we identified an inter-fibre distance of 350 µm as the measure that better differentiated patients from controls (AUC = 0.85, sensitivity: 74%, specificity: 94%). At least one such segment was also observed in all patients with reduced IENF count. Conclusion: Irregular spatial distribution is an SFN intrinsic feature preceding actual nerve loss. The presence of a stretch of denervated epidermis longer than 350 µm is a parameter able to increase the diagnostic efficiency of skin biopsy.

The analysis of epidermal nerve fibre spatial distribution improves the diagnostic yield of skin biopsy / Piscosquito, G.; Provitera, V.; Mozzillo, S.; Caporaso, G.; Borreca, I.; Stancanelli, A.; Manganelli, F.; Santoro, L.; Nolano, M.. - In: NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY. - ISSN 0305-1846. - 47:2(2021), pp. 210-217. [10.1111/nan.12651]

The analysis of epidermal nerve fibre spatial distribution improves the diagnostic yield of skin biopsy

Provitera V.;Manganelli F.;Santoro L.;Nolano M.
2021

Abstract

Aim: Small fibre neuropathy (SFN) diagnosis represents a challenge for neurologists. The diagnostic gold standard is intraepidermal nerve fibre (IENF) density, but in about 10–20% of patients with symptoms/signs and abnormalities on functional tests, it remains within normal range. We propose an adjunctive parameter to improve the efficiency of skin biopsy diagnosis. Methods: We recruited 31 patients with SFN symptoms/signs, normal nerve conduction study, abnormal quantitative sensory testing and normal IENF density. We also included 31 healthy controls and 31 SFN patients with reduced IENF density as control groups. Results: We measured the distance between consecutive IENFs in the three groups. Mean inter-fibre distances did not differ between patients with normal counts and healthy controls (66.7 ± 14.5 μm vs. 76.7 ± 13.4 μm; P = 0.052), while the relative standard deviation was significantly (P < 0.001) higher in patients (79.3 ± 29.9) compared to controls (51.6 ± 12.2). Using ROC analysis, we identified an inter-fibre distance of 350 µm as the measure that better differentiated patients from controls (AUC = 0.85, sensitivity: 74%, specificity: 94%). At least one such segment was also observed in all patients with reduced IENF count. Conclusion: Irregular spatial distribution is an SFN intrinsic feature preceding actual nerve loss. The presence of a stretch of denervated epidermis longer than 350 µm is a parameter able to increase the diagnostic efficiency of skin biopsy.
2021
The analysis of epidermal nerve fibre spatial distribution improves the diagnostic yield of skin biopsy / Piscosquito, G.; Provitera, V.; Mozzillo, S.; Caporaso, G.; Borreca, I.; Stancanelli, A.; Manganelli, F.; Santoro, L.; Nolano, M.. - In: NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY. - ISSN 0305-1846. - 47:2(2021), pp. 210-217. [10.1111/nan.12651]
File in questo prodotto:
File Dimensione Formato  
Neuropathology Appl Neurobio - 2020 - Piscosquito - The analysis of epidermal nerve fibre spatial distribution improves the.pdf

accesso aperto

Licenza: Copyright dell'editore
Dimensione 586.12 kB
Formato Adobe PDF
586.12 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/829225
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact