Let Ω ⊂ Rn, n≥ 2 , be a bounded, connected, open set with Lipschitz boundary. Let F be a suitable norm in Rn and let Δ Fu= div (Fξ(∇ u) F(∇ u)) be the so-called Finsler Laplacian, with u∈ H1(Ω). In this paper, we prove two inequalities for λF(β, Ω) , the first eigenvalue of Δ F with Robin boundary conditions involving a positive function β(x). As a consequence of our result, we obtain the asymptotic behavior of λF(β, Ω) when β is a positive constant which goes to zero
Two inequalities for the first Robin eigenvalue of the Finsler Laplacian / DI BLASIO, Giuseppina; Gavitone, Nunzia. - In: ARCHIV DER MATHEMATIK. - ISSN 0003-889X. - (2022). [10.1007/s00013-021-01687-w]
Two inequalities for the first Robin eigenvalue of the Finsler Laplacian
di Blasio Giuseppina;Gavitone Nunzia
2022
Abstract
Let Ω ⊂ Rn, n≥ 2 , be a bounded, connected, open set with Lipschitz boundary. Let F be a suitable norm in Rn and let Δ Fu= div (Fξ(∇ u) F(∇ u)) be the so-called Finsler Laplacian, with u∈ H1(Ω). In this paper, we prove two inequalities for λF(β, Ω) , the first eigenvalue of Δ F with Robin boundary conditions involving a positive function β(x). As a consequence of our result, we obtain the asymptotic behavior of λF(β, Ω) when β is a positive constant which goes to zeroFile | Dimensione | Formato | |
---|---|---|---|
ADMA.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
280.46 kB
Formato
Adobe PDF
|
280.46 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.