Stabilising an inverted pendulum on a cart is a well-known control problem. This paper proposes the mechanical and control design for solving the oscillation problem of a variable-length flexible beam mounted on a mobile robot. The system under consideration is the robot PovRob, used at the European Organization for Nuclear Research (CERN) for visual and remote inspection tasks of particle accelerators. The flexible beam mounted on the robot houses cameras and sensors. The innovative aspect of the approach concerns the use of actuated masses mounted at the end of the rod, which induces an impulsive moment due to their inertia and angular acceleration. The modelling of the flexible rod has been suitably simplified in a lumped-parameter system, with dynamic parameters related to the rod’s flexibility. A linearisation of the dynamic model allows a linear-quadratic control to stabilise the system. Experimental results support the identification and the validation of the dynamic model, while simulation results evaluate the performances of the designed control law.
Modelling and control of a variable-length flexible beam on inspection ground robot / D'Ago, G.; Lefebvre, M.; Buonocore, L. R.; Ruggiero, F.; Di Castro, M.; Lippiello, V.. - (2022), pp. 8224-8230. (Intervento presentato al convegno 2022 IEEE International Conference on Robotics and Automation) [10.1109/ICRA46639.2022.9812444].
Modelling and control of a variable-length flexible beam on inspection ground robot
Buonocore L. R.;Ruggiero F.;Lippiello V.
2022
Abstract
Stabilising an inverted pendulum on a cart is a well-known control problem. This paper proposes the mechanical and control design for solving the oscillation problem of a variable-length flexible beam mounted on a mobile robot. The system under consideration is the robot PovRob, used at the European Organization for Nuclear Research (CERN) for visual and remote inspection tasks of particle accelerators. The flexible beam mounted on the robot houses cameras and sensors. The innovative aspect of the approach concerns the use of actuated masses mounted at the end of the rod, which induces an impulsive moment due to their inertia and angular acceleration. The modelling of the flexible rod has been suitably simplified in a lumped-parameter system, with dynamic parameters related to the rod’s flexibility. A linearisation of the dynamic model allows a linear-quadratic control to stabilise the system. Experimental results support the identification and the validation of the dynamic model, while simulation results evaluate the performances of the designed control law.File | Dimensione | Formato | |
---|---|---|---|
C37.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Dominio pubblico
Dimensione
1.42 MB
Formato
Adobe PDF
|
1.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.