Starch-based bioplastics offer a promising alternative to conventional plastics. However, they exhibit certain limitations, notably in terms of mechanical strength and barrier properties. These challenges could potentially be addressed through the incorporation of nanocellulose as a reinforcing agent. In this study, we fabricated bioplastic films using a casting and blending approach, employing highly linear pure amylose (AM) in combination with cellulose nanofibers (CNF) or cellulose nanocrystals (CNC) at various ratios. This allowed for a direct comparison of CNF and CNC functionality within the AM matrix. We systematically assessed mechanical properties and water barrier characteristics, encompassing parameters such as water permeability, moisture content, swelling, solubility, crystallinity, thermal stability, transmittance, and opacity. Additionally, we investigated water vapor and oxygen permeability. Furthermore, we delved into distinctions between CNC and CNF biocomposites. Incorporation of either type of nanocellulose yielded enhancements in film properties, with CNF exerting a more pronounced positive influence compared to CNC. Particularly noteworthy were the mechanical properties, wherein CNF composite films demonstrated markedly higher tensile strength and Young’s modulus compared to their CNC counterparts. For instance, the inclusion of 1% CNF led to a substantial increase in AM tensile strength from 66.1 MPa to 144.8 MPa. Conversely, water vapor permeability exhibited a converse behavior, as the addition of 1% CNF resulted in a significant reduction of water barrier properties from 8.7 to 1.32 g mm m−2 24 h−1kPa−1. Intriguingly, CNC films displayed greater elongation at the point of rupture in comparison to CNF films. This can be attributed to the larger surface area of the CNC and the favorable interfacial interaction between AM and CNC. Notably, the introduction of nanocellulose led to reduced film opacity and improved thermal stability. In summary, nanocellulose interacted synergistically with the AM matrix, establishing a robust hydrogen-bonded network that greatly enhanced the performance of the biocomposite films.
A Comparison of Cellulose Nanocrystals and Nanofibers as Reinforcements to Amylose-Based Composite Bioplastics / Faisal, M.; Zmiric, M.; Kim, N. Q. N.; Bruun, S.; Mariniello, L.; Famiglietti, M.; Bordallo, H. N.; Kirkensgaard, J. J. K.; Jorgensen, B.; Ulvskov, P.; Hebelstrup, K. H.; Blennow, A.. - In: COATINGS. - ISSN 2079-6412. - 13:9(2023), p. 1573. [10.3390/coatings13091573]
A Comparison of Cellulose Nanocrystals and Nanofibers as Reinforcements to Amylose-Based Composite Bioplastics
Mariniello L.;Famiglietti M.;
2023
Abstract
Starch-based bioplastics offer a promising alternative to conventional plastics. However, they exhibit certain limitations, notably in terms of mechanical strength and barrier properties. These challenges could potentially be addressed through the incorporation of nanocellulose as a reinforcing agent. In this study, we fabricated bioplastic films using a casting and blending approach, employing highly linear pure amylose (AM) in combination with cellulose nanofibers (CNF) or cellulose nanocrystals (CNC) at various ratios. This allowed for a direct comparison of CNF and CNC functionality within the AM matrix. We systematically assessed mechanical properties and water barrier characteristics, encompassing parameters such as water permeability, moisture content, swelling, solubility, crystallinity, thermal stability, transmittance, and opacity. Additionally, we investigated water vapor and oxygen permeability. Furthermore, we delved into distinctions between CNC and CNF biocomposites. Incorporation of either type of nanocellulose yielded enhancements in film properties, with CNF exerting a more pronounced positive influence compared to CNC. Particularly noteworthy were the mechanical properties, wherein CNF composite films demonstrated markedly higher tensile strength and Young’s modulus compared to their CNC counterparts. For instance, the inclusion of 1% CNF led to a substantial increase in AM tensile strength from 66.1 MPa to 144.8 MPa. Conversely, water vapor permeability exhibited a converse behavior, as the addition of 1% CNF resulted in a significant reduction of water barrier properties from 8.7 to 1.32 g mm m−2 24 h−1kPa−1. Intriguingly, CNC films displayed greater elongation at the point of rupture in comparison to CNF films. This can be attributed to the larger surface area of the CNC and the favorable interfacial interaction between AM and CNC. Notably, the introduction of nanocellulose led to reduced film opacity and improved thermal stability. In summary, nanocellulose interacted synergistically with the AM matrix, establishing a robust hydrogen-bonded network that greatly enhanced the performance of the biocomposite films.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.