We discuss the quantum Poincaré symmetries of the rho-Minkowski spacetime, a space characterised by an angular form of noncommutativity. We show that it is possible to give them both a bicrossproduct and a Drinfel’d twist structure. We also obtain a new noncommutative ?-product, which is cyclic with respect to the standard integral measure.

Bicrossproduct vs. twist quantum symmetries in noncommutative geometries: the case of ϱ-Minkowski / Fabiano, Giuseppe; Gubitosi, Giulia; Lizzi, Fedele; Scala, Luca; Vitale, Patrizia. - In: JOURNAL OF HIGH ENERGY PHYSICS. - ISSN 1029-8479. - 2023:8(2023). [10.1007/JHEP08(2023)220]

Bicrossproduct vs. twist quantum symmetries in noncommutative geometries: the case of ϱ-Minkowski

Fabiano, Giuseppe;Gubitosi, Giulia;Lizzi, Fedele;Scala, Luca;Vitale, Patrizia
2023

Abstract

We discuss the quantum Poincaré symmetries of the rho-Minkowski spacetime, a space characterised by an angular form of noncommutativity. We show that it is possible to give them both a bicrossproduct and a Drinfel’d twist structure. We also obtain a new noncommutative ?-product, which is cyclic with respect to the standard integral measure.
2023
Bicrossproduct vs. twist quantum symmetries in noncommutative geometries: the case of ϱ-Minkowski / Fabiano, Giuseppe; Gubitosi, Giulia; Lizzi, Fedele; Scala, Luca; Vitale, Patrizia. - In: JOURNAL OF HIGH ENERGY PHYSICS. - ISSN 1029-8479. - 2023:8(2023). [10.1007/JHEP08(2023)220]
File in questo prodotto:
File Dimensione Formato  
bicrossvstwist.pdf

accesso aperto

Licenza: Dominio pubblico
Dimensione 564.61 kB
Formato Adobe PDF
564.61 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/949708
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact