Eight trained assessors evaluated one visual, eight texture and four gustative attributes of 15 commercial spreads. In addition, 100 consumers evaluated the acceptability of the spreads. Rheological behavior of the samples was evaluated in transient (stress–relaxation test) and dynamic (strain and frequency sweep test) shear mode. Thermal measurements were also performed. Finally, the microstructure of the samples was analyzed by scanning electron microscopy. Partial least squares regression was used to predict acceptability from sensory attributes and texture from instrumental data. Scanning electron micrographs indicated that spreads differed in morphology, size and distribution of hazelnut particles. Overall liking of the spreads was found to be related to hazelnut flavor and texture attributes. Prediction of the most important texture properties from instrumental measurements was quite successful, especially for spreadability which was found negatively related to the consistency and flow indices and, secondly, for meltability which was found to be strongly dependent on measured thermal parameters.
Predicting texture attributes from microstructural, rheological and thermal properties of hazelnut spreads / DI MONACO, Rossella; T., Giancone; Cavella, Silvana; Masi, Paolo. - In: JOURNAL OF TEXTURE STUDIES. - ISSN 0022-4901. - STAMPA. - 39:(2008), pp. 460-479.
Predicting texture attributes from microstructural, rheological and thermal properties of hazelnut spreads
DI MONACO, ROSSELLA;CAVELLA, SILVANA;MASI, PAOLO
2008
Abstract
Eight trained assessors evaluated one visual, eight texture and four gustative attributes of 15 commercial spreads. In addition, 100 consumers evaluated the acceptability of the spreads. Rheological behavior of the samples was evaluated in transient (stress–relaxation test) and dynamic (strain and frequency sweep test) shear mode. Thermal measurements were also performed. Finally, the microstructure of the samples was analyzed by scanning electron microscopy. Partial least squares regression was used to predict acceptability from sensory attributes and texture from instrumental data. Scanning electron micrographs indicated that spreads differed in morphology, size and distribution of hazelnut particles. Overall liking of the spreads was found to be related to hazelnut flavor and texture attributes. Prediction of the most important texture properties from instrumental measurements was quite successful, especially for spreadability which was found negatively related to the consistency and flow indices and, secondly, for meltability which was found to be strongly dependent on measured thermal parameters.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.