: In the last years, it has been proved that some viruses are able to re-structure chromatin organization and alter the epigenomic landscape of the host genome. In addition, they are able to affect the physical mechanisms shaping chromatin 3D structure, with a consequent impact on gene activity. Here, we investigate with polymer physics genome re-organization of the host genome upon SARS-CoV-2 viral infection and how it can impact structural variability within the population of single-cell chromatin configurations. Using published Hi-C data and molecular dynamics simulations, we build ensembles of 3D configurations representing single-cell chromatin conformations in control and SARS-CoV-2 infected conditions. We focus on genomic length scales of TADs and consider, as a case study, models of real loci containing DDX58 and IL6 genes, belonging, respectively, to the antiviral interferon response and pro-inflammatory genes. Clustering analysis applied to the ensemble of polymer configurations reveals a generally increased variability and a more heterogeneous population of 3D structures in infected conditions. This points toward a scenario in which viral infection leads to a loss of chromatin structural specificity with, likely, a consequent impact on the correct regulation of host cell genes.
Loss of structural specificity in 3D genome organization upon viral infection is predicted by polymer physics / Fontana, Andrea; Bianco, Simona; Tafuri, Fabrizio; Esposito, Andrea; Abraham, Alex; Conte, Mattia; Vercellone, Francesca; Di Pierno, Florinda; Kundu, Sumanta; Guha, Sougata; Di Carluccio, Ciro; Prisco, Antonella; Nicodemi, Mario; Chiariello, Andrea M.. - In: THE JOURNAL OF CHEMICAL PHYSICS. - ISSN 0021-9606. - 162:1(2025). [10.1063/5.0243454]
Loss of structural specificity in 3D genome organization upon viral infection is predicted by polymer physics
Fontana, Andrea;Bianco, Simona;Tafuri, Fabrizio;Esposito, Andrea;Abraham, Alex;Conte, Mattia;Vercellone, Francesca;Di Pierno, Florinda;Kundu, Sumanta;Guha, Sougata;Di Carluccio, Ciro;Nicodemi, Mario;Chiariello, Andrea M.
2025
Abstract
: In the last years, it has been proved that some viruses are able to re-structure chromatin organization and alter the epigenomic landscape of the host genome. In addition, they are able to affect the physical mechanisms shaping chromatin 3D structure, with a consequent impact on gene activity. Here, we investigate with polymer physics genome re-organization of the host genome upon SARS-CoV-2 viral infection and how it can impact structural variability within the population of single-cell chromatin configurations. Using published Hi-C data and molecular dynamics simulations, we build ensembles of 3D configurations representing single-cell chromatin conformations in control and SARS-CoV-2 infected conditions. We focus on genomic length scales of TADs and consider, as a case study, models of real loci containing DDX58 and IL6 genes, belonging, respectively, to the antiviral interferon response and pro-inflammatory genes. Clustering analysis applied to the ensemble of polymer configurations reveals a generally increased variability and a more heterogeneous population of 3D structures in infected conditions. This points toward a scenario in which viral infection leads to a loss of chromatin structural specificity with, likely, a consequent impact on the correct regulation of host cell genes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.